Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?
نویسندگان
چکیده
In this study, the role of the recently identified class of phytohormones, strigolactones, in shaping root architecture was addressed. Primary root lengths of strigolactone-deficient and -insensitive Arabidopsis (Arabidopsis thaliana) plants were shorter than those of wild-type plants. This was accompanied by a reduction in meristem cell number, which could be rescued by application of the synthetic strigolactone analog GR24 in all genotypes except in the strigolactone-insensitive mutant. Upon GR24 treatment, cells in the transition zone showed a gradual increase in cell length, resulting in a vague transition point and an increase in transition zone size. PIN1/3/7-green fluorescent protein intensities in provascular tissue of the primary root tip were decreased, whereas PIN3-green fluorescent protein intensity in the columella was not affected. During phosphate-sufficient conditions, GR24 application to the roots suppressed lateral root primordial development and lateral root forming potential, leading to a reduction in lateral root density. Moreover, auxin levels in leaf tissue were reduced. When auxin levels were increased by exogenous application of naphthylacetic acid, GR24 application had a stimulatory effect on lateral root development instead. Similarly, under phosphate-limiting conditions, endogenous strigolactones present in wild-type plants stimulated a more rapid outgrowth of lateral root primordia when compared with strigolactone-deficient mutants. These results suggest that strigolactones are able to modulate local auxin levels and that the net result of strigolactone action is dependent on the auxin status of the plant. We postulate that the tightly balanced auxin-strigolactone interaction is the basis for the mechanism of the regulation of the plants' root-to-shoot ratio.
منابع مشابه
From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula.
In the rhizosphere, strigolactones not only act as crucial signalling molecules in the communication of plants with parasitic weeds and arbuscular mycorrhiza, but they also play a key role in regulating different aspects of the root system. Here we investigated how strigolactones influence the root architecture of Medicago truncatula. We provide evidence that addition of the synthetic strigolac...
متن کاملStrigolactones seem not to be involved in the nonsusceptibilty of arbuscular mycorrhizal (AM) nonhost plants to AM fungi
Although most land plants are hosts for arbuscular mycorrhizal fungi (AMF), a small number of plant families are arbuscular mycorrhizal (AM) nonhosts. There are indications that strigolactone levels in root exudates of AM nonhost plants are lower than in AM host plants, and it has been shown that in the strigolactone-deficient rms1 mutant (ccd8) of the AM host plant pea, the AMF colonization of...
متن کاملStrigolactones are positive regulators of light-harvesting genes in tomato
Strigolactones are newly identified plant hormones, shown to participate in the regulation of lateral shoot branching and root development. However, little is known about their effects on biological processes, genes, and proteins. Transcription profiling of roots treated with GR24, a synthetic strigolactone with proven biological activity, and/or indole acetic acid (IAA) was combined with physi...
متن کاملDAD2 Is an α/β Hydrolase Likely to Be Involved in the Perception of the Plant Branching Hormone, Strigolactone
Strigolactones are a recently discovered class of plant hormone involved in branching, leaf senescence, root development, and plant-microbe interactions. They are carotenoid-derived lactones, synthesized in the roots and transported acropetally to modulate axillary bud outgrowth (i.e., branching). However, a receptor for strigolactones has not been identified. We have identified the DAD2 gene f...
متن کاملStrigolactones spatially influence lateral root development through the cytokinin signaling network.
Strigolactones are important rhizosphere signals that act as phytohormones and have multiple functions, including modulation of lateral root (LR) development. Here, we show that treatment with the strigolactone analog GR24 did not affect LR initiation, but negatively influenced LR priming and emergence, the latter especially near the root-shoot junction. The cytokinin module ARABIDOPSIS HISTIDI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 155 2 شماره
صفحات -
تاریخ انتشار 2011